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Abstract -
One of the main challenges in the visual simultaneous lo-

calization and mapping (V-SLAM) of construction robots is
robustness to overexposure conditions. The main difficul-
ties arise from sensor exposure limitations that cause images
to lose information. In addition, construction robots can
hardly track enough points in overexposure conditions due
to the assumption of constant brightness in SLAM. We pro-
pose a High and Low Exposure SLAM (HLE-SLAM) system
to recover missing information in overexposed frames. Our
method uses frame exposure fusion to generate globally well-
exposed frames. It uses exposure, contrast and information
entropy as indicators to select the best part of brightness and
information in high and low exposed frames. We adopt the
Shi-Tomasi and Kanade-Lucas-Tomasi (KLT) sparse optical
flow algorithms to improve the ability to detect and track fea-
ture points in the overexposed environment. Experimental
results on data sets and real environments show that HLE-
SLAM can effectively solve the overexposure problem.

Keywords -
Overexposure; Frames fusion; Simultaneous Localization

and Mapping; Construction robots

1 Introduction
The construction industry in industrialized countries has

faced severe labor shortages in recent years. Improving
the automation of construction projects can solve these
challenges[1]. As a result, the development of autonomous
robotics and vehicles is increasing for a variety of construc-
tion applications. Nowadays, SLAM systems are mainly
divided into LiDAR SLAM and V-SLAM systems. The
V-SLAM system is more suitable for low-cost construc-
tion robot platforms due to its low price, low computa-
tional complexity, and rich visual information. Although
these V-SLAM algorithms have achieved impressive re-
sults in a controlled laboratory environment, the robust-
ness of V-SLAM in real-world construction scenarios is
a major challenge[2]. In an indoor scene with direct sun-
light or when moving from a dimly lit scene to a highly lit
scene, overexposure problems occur due to the dynamic
limitations of the visual camera.

The dynamic range of a camera is usually determined
by fixed parameters or proprietary algorithm. The built-
in control algorithms are generally suitable for situations
where lighting conditions are constant or change only
slowly. For scenes with changing lighting conditions, the
automatic exposure camera will result in poorer exposure

images. The algorithms of V-SLAM are set for certain
ideal environments, such as constant light intensity and
rich textures. In other words, construction robots lose
their localization and recognition capabilities in overex-
posed scenes. Complex lighting scenario on construction
site is a major challenge for robot path planning. Nowa-
days, there are three solutions to reduce the impact of
overexposed images on the V-SLAM. The first method
relies on the post-processing of overexposed images to re-
duce variations in light intensity. The second approach
uses the invariability of luminance changes in object de-
tection for feature detection and matching. These methods
can improve the performance of visual navigation to some
extent. However, they cannot compensate for the loss
of information caused by overexposed images, and these
methods involve additional computational overhead. The
third method is to adjust the image exposure parameters
using an automatic exposure algorithm[3]. However, ad-
justing the camera response parameters is still a complex
problem given different scenes. Improper exposure pa-
rameter settings can also result in low-light images.

In this paper, we propose a High and Low Exposure
SLAM (HLE-SLAM) system to recover the overexposed
images, which helps construction robots in localization
and mapping. We use two cameras with different expo-
sure settings to record videos simultaneously and repair the
overexposed by exposure fusion. We calculate the expo-
sure, contrast and information entropy values of different
exposure images to generate the fusion weight. Then, we
use fusion weight to retain rich frame information in dif-
ferent exposure pictures. After image fusion, we use the
Shi-Tomasi[4] method for corner detection and uniformly
assign feature points to track in ORB-SLAM2[5]. Fi-
nally, we test the HLE-SLAM system in EuRoc[6] dataset
and construction environment. Experiments show that
our proposed method has better location performance in
both simulated overexposed environment datasets and real
indoor overexposed construction environments.

2 Methodology

The flow of the proposed method is shown in Figure1.
The HLE-SLAM system mainly consists of three parts:
dual camera frame acquisition and alignment, frame ex-
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Figure 1. Architecture of the proposed HLE-SLAM.

posure fusion, feature extraction, tracking and local map-
ping.

A. Dual camera frame acquisition and alignment
We use two Intel RealSense Depth D435 cameras for

synchronous data acquisition, and the acquisition fre-
quency is both 20Hz. One uses built-in program param-
eters, and the other controls the overall brightness of the
image by limiting the maximum exposure time of the cam-
era. Since the two cameras are arranged vertically, there
is a difference of several pixel values in the vertical direc-
tion. We achieve the overall alignment of the image by
removing the non-overlapping pixel values in the top and
bottom frames.

B. Frame exposure fusion
Frame exposure fusion produces globally well-exposed

images by preserving the best-displayed parts of the high
and low-exposed sequences. The frame contains colour-
less areas due to underexposure and overexposure. These
areas should be weighted less, while areas containing good
light intensity and picture information should be retained.
We select the best brightness part of the two pictures us-
ing three index parameters: exposure, contrast, and infor-
mation entropy. The final image is determined using an
average weighting method.

Exposure: By calculating the intensity of the gray im-
age, the exposure of the pixel value can be judged. We
want to keep frame intensities that are not near zero (un-
derexposed) or one (overexposed). We use the following
Gaussian curve:

exp(− (� − 0.5)2

2�2 ) (1)

to set the weight of each pixel according to how close
its intensity i is to 0.5. The � equals 0.2 in our imple-
mentation. In this way, we can get the E representing the
exposure value.

Contrast: We apply the Laplace filter to each grayscale
image and take the absolute value of the filter response.

The Laplace filter is defined as:

∇ � (�, �) = �2 �

��2 + �2 �

��2 , (2)

where f(x,y) is a two-dimensional image. This results in a
simple contrast indicator C. It tends to assign high weights
to important elements like edges and textures.

Information entropy value: The one-dimensional en-
tropy of the image represents the information contained in
the aggregated features of gray distribution in an image.
�� represents the proportion of pixels whose gray value is
i in the image, and then the unary gray entropy is defined
as:

� =
255∑
�=0

�� · log �� , (3)

Where H is the unary gray information entropy, and �� is
the proportion of grey value i. When the image is overex-
posed/dark (white or black), there is only one grey value.
Then the entropy is the minimum, H = 0. The rich in-
formation of images is conducive to feature extraction of
V-SLAM. We divide the whole image into 16x16 blocks
and calculate the information entropy of each block. Then,
we assign the calculated information entropy value of each
block to all pixels within that block, representing their in-
formation entropy value. On this basis, we generate the
corresponding weight value and save the larger informa-
tion entropy part. By using multiplication, we combine
the information from the different index parameters into
a scalar weight map. The linear combination weighting
method is used to control the influence of each measure
part, and the weight of each picture is generated by the
following formula:

�� � ,� = �� (�� � ,� ) · �� (�� � ,� ) · �ℎ (�� � ,� ), (4)

where C, E and H are contrast, exposure and information
entropy. The ��, ��, �ℎ represent the corresponding
weight. The subscript i and j, refers to pixel (i, j) in



k(high/low) exposure images. We use equally weighted
quality measures (��=��=�ℎ=1). In extreme lighting
situations, such as a large area facing direct sunlight, we
adjust the parameters based on field tests.

The fusion image R can then be obtained by a weighted
blending of the input high/low exposure images:

�� � =
���−��������∑
ℎ��ℎ−��������

�� � ,� ·�� � ,� , (5)

where W means weight map, I means input images.
C. Feature extraction, tracking and local mapping
In this paper, ORB -SLAM2 is selected as a navigation

algorithm for construction robots. The ORB -SLAM2
system is based on feature point extraction and match-
ing, but in an overexposed environment, feature points
are hardly detected and matched. Therefore, position and
pose tracking will fail in a construction site scene with
low texture and overexposed scenes. We adopt the Shi-
Tomasi and Kanade-Lucas-Tomasi (KLT) sparse optical
flow algorithms to solve these problems. The average dis-
tribution of feature points in an overexposed environment
reduces feature point matching requirements. New points
are added if there are not enough points left after the uni-
form procedure to reach the required 200. The next frame
is considered a new keyframe if the difference between the
parallaxes of the two frames is significant.

3 Experiments and results
Our work focuses on the visual navigation of construc-

tion robots to work reliably in overexposed environments.
Therefore, we experiment with the EuRoc MAV dataset
and real construction scenes.

A.Public Dataset
In EuRoc MAV datasets, there are some overexposed

scenes. These indoor lighting problems are similar to
overexposed problems in construction scenes, so they are
used to test algorithms in overexposed environments. We
artificially increased the exposure value in the MAV to
create more obvious overexposure frames. In the dataset
experiment, we use the original dataset as the low-light
video stream and enhance it to simulate the overexposed
video stream.

Therefore, our HLE system use the original and over-
exposed datasets as input. As shown in Figure 2, we use
the HLE method to recover the overexposed frames in
MAV datasets. To verify the availability of our method
in overexposure, we compare the HLE with original and
overexposure frames in SLAM feature point extraction and
gradient calculation, as shown in Figure 3. Our method
enhances the gradient information of frames and enables
the algorithm to detect more feature points.

Table 1 compares the performance of the HLE in

Figure 2. The results of image fusion in MAV
datasets.

Figure 3. The gradient and feature point results of
original, overexposure and HLE method.

Table 1. Performance comparison in the EuRoC MH
datasets (Root mean square error in m).

Sequence Original Overexpose HLE

V101 0.055 0.143 0.058
V102 0.064 0.155 0.061
V103 0.096 0.151 0.097
V201 0.046 0.121 0.074
V202 0.057 0.118 0.059

monocular sensors with original and overexposed; all
tests are based on the KLT ORB-SLAM2. As shown
in the table, raising the exposure value makes the over-
exposed frames show a more significant estimated error.
Our method can reduce the interference caused by over-
exposure and restore image information to reduce errors.
In the V102, the HLE shows better results than the orig-
inal. Because some low-light images exist in the V102,
it is difficult to locate them in the dark environment. The
overexposed frames are fused with low-light frames to
enhance the low-light frames in the original video. The
HLE method outputs frames with stable and continuous
brightness and more information, which makes the robot
position with smaller error results.



Figure 4. High and low exposure frames captured by
the Intel Realsense 435 camera and processed frame
in the HLE method.

B. Real-World Experiment

We use the Intel Realsense 435 camera to conduct real
experiments in overexposed indoor construction scenes.
In our real-world experiment, we capture overexposed
images in a direct sunlight environment using an auto-
exposed camera, while we use a camera with a shorter
exposure time to capture the low-exposure images. Low-
exposure frames are difficult to initialize and map. So we
only compare the HLE method with the original overex-
posure frames in the real-world experiment. In Figure 4,
we compare the overexposed image with the HLE image.
The camera produces some overexposed frames because
of the intense light. In frames, overexposure is shown
in the balcony doors and windows, and much informa-
tion is missing. The HLE fuses overexposure frames with
low-exposure frames to recover missing information. In
order to further verify the performance of our algorithm,
we conduct location estimation and mapping experiments.
As shown in Figure5, in the left part of the navigation, the
original frames cannot provide enough feature points for
tracking and matching, so we cannot locate them effec-
tively in this part. In addition, there is a large deviation in
the right corner part.

Figure 5. 3D pose graph. The green line is the HLE-
SLAM. The blue line is the original overexposure
frame.

4 Conclusions
In this paper, an exposure fusion-based construction

robot SLAM system is proposed for overexposure prob-
lems. The exposure fusion method based on contrast,
exposure and information entropy can recover missing in-
formation and help the construction robot track the fea-
ture points in the overexposed environment. We validate
our HLE-SLAM in public datasets and real construction
scenes. The results show that our method can effectively
solve the problem of location errors caused by overexposed
light. Our method can run in real-time on mobile com-
puters and is suitable for various overexposed construction
scenarios.
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